QAPLIB - A Quadratic Assignment Problem Library
R.E. BURKARD, E. ÇELA, S.E. KARISCH and F. RENDL
References
- [AnBr1:00]
-
K.M. ANSTREICHER and N.W. BRIXIUS,
A new bound for the quadratic assignment problem based on convex quadratic
programming,
Mathematical Programming 80:341-357, 2001.
- [AnBr2:00]
-
K.M. ANSTREICHER and N.W. BRIXIUS.
Solving quadratic assignment problems using convex quadratic
programming relaxations,
Optimization Methods and Software 16:49-68, 2001.
- [AnBrGoLi:01]
-
K.M. ANSTREICHER, N.W. BRIXIUS, J.-P. GOUX, and J.LINDEROTH.
Solving large quadratic assignment problems on computational grids,
Mathematical Programming 91(3):563-588, 2002.
- [Amin:98]
-
S. AMIN. Simulated Jumping. Annals of Operations Research, 1998.
To appear.
- [AhOrTi:98]
-
R. AHUJA, J.B. ORLIN and A. TIVARI.
A greedy genetic algorithm for the quadratic assignment problem.
Comput. Oper. Res., 27(10):917-934, 2000.
To appear.
- [BaChCoLau:03]
-
J. BALAKRISHNAN, C.H. CHENG, D.G. CONWAY AND C.M. LAU.
A hybrid genetic algorithm for the dynamic plant layout problem,
International Journal of Production Economics, vol. 86:2, pp. 107-120, 2003.
- [BaTe:94]
-
R. BATTITI and G. TECCHIOLLI. The reactive tabu search.
ORSA Journal on Computing, 6(2):126-140, 1994.
- [BlElFaWi:03]
-
A. BLANCHARD, S. ELLOUMI, A. FAYE and N. WICKER. Un algorithme de
génération de coupes pour le problème de
l'affectation quadratique.
INFOR, 41(1):35-49, 2003.
- [Bouras:96]
-
A. BOURAS,
Problème d'affectation quadratique de petit rang; modèles, compléxite, et applications,
PhD Thesis, L'Université Joseph Fourier, Grenoble, France.
- [Brixius:00]
-
N.W. BRIXIUS.
Solving Large Scale Quadratic Assignment Problems. PhD
Thesis, University of Iowa, USA, 2000.
- [BrAn:01]
-
N.W. BRIXIUS and K.M. ANSTREICHER.
The Steinberg wiring problem.
Working Paper, The University of Iowa, October 2001.
- [Bruengger:97]
-
A. BRUENGGER.
Solving Hard Combinatorial Optimization Problems in Parallel:
Three Case-Studies. PhD Thesis, ETH Zurich, Hartung-Gorre Verlag
Konstanz, ISBN 3-89649-299-3, 1997.
- [BrClMaPe:96]
-
A. BRUENGGER, J. CLAUSEN, A. MARZETTA and M. PERREGAARD.
Joining forces in solving large-scale quadratic assignment problems in
parallel. DIKU Technical Report, University of Copenhagen, 1996.
- [BrMa:97]
-
A. BRUENGGER and A. MARZETTA.
Private communication, 1997.
- [Burkard:91]
-
R.E. BURKARD. Locations with spatial interactions: the quadratic assignment
problem. In P.B. Mirchandani and R.L. Francis, editors, Discrete
Location Theory. Wiley, Berlin, 1991.
- [BuCe:96]
-
R.E. BURKARD and E. ÇELA.
Quadratic and three-dimensional assignment problems.
In M. Dell'Amico, F. Maffioli, and S. Martello, editors,
Annotated Bibliographies in Combinatorial Optimization . 1997.
Wiley, Chichester, pp. 373-392.
- [BCPP:98]
-
R.E. BURKARD, E. ÇELA, P.M. PARDALOS and L. PITSOULIS.
The quadratic assignment problem.
In P.P. Pardalos and M.G.C. Resende, editors,
Handbook of Combinatorial Optimization, 1998.
Kluwer Academic Publishers, Dordrecht, pp. 241-238.
- [BuDe:80]
-
R.E. BURKARD and U. DERIGS.
Assignment and matching problems: Solution methods with fortran
programs, volume 184 of Lecture Notes in Economics and Mathematical
Systems.
Springer, Berlin, 1980.
- [BuOf:77]
-
R.E. BURKARD and J. OFFERMANN.
Entwurf von Schreibmaschinentastaturen mittels quadratischer
Zuordnungsprobleme.
Zeitschrift für Operations Research, 21:B121-B132, 1977.
- [BuRe:84]
-
R.E. BURKARD and F. RENDL.
A thermodynamically motivated simulation procedure for combinatorial
optimization problems.
European Journal of Operations Research, 17(2):169-174, 1984.
- [Cela:95]
-
E. ÇELA.
The quadratic assignment problem: special cases and relatives.
PhD thesis, Graz University of Technology, Graz, Austria, 1995.
- [Cela:98]
-
E. ÇELA.
The Quadratic Assignment Problem: Theory and Algorithms.
Kluwer Academic Publishers, Dordrecht, 1998.
- [ChBe:89]
-
N. CHRISTOFIDES and E. BENAVENT.
An exact algorithm for the quadratic assignment problem.
Operations Research, 37-5:760-768, 1989.
- [CEKPT:96]
-
J. CLAUSEN, T. ESPERSEN, S.E. KARISCH, M. PERREGAARD, N. SENSEN and
S. TSCHÖKE.
Benchmark testing for quadratic assignment problems on a portable parallel
branch-and-bound library. Work in progress, 1996.
- [ClPe:94]
-
J. CLAUSEN and M. PERREGAARD.
Solving large quadratic assignment problems in parallel.
Computational Optimization and Applications, 8(2):11-127, 1997.
- [Connolly:90]
-
D. T. CONNOLLY.
An improved annealing scheme for the QAP.
European Journal of Operational Research, 46:93-100, 1990.
- [CuMaMiTa:97]
-
V.-D. CUNG, T. MAUTOR, P. MICHELON and A. TAVARES.
A scatter search based approach for the quadratic assignment problem.
Proceedings of the IEEE-ICEC'97 Conference in Indianapolis,
April 13-16, 1997.
- [DKSo:07]
-
E. DE KLERK and R. SOTIROV.
Exploiting group symmetry in semidefinite programming relaxations of the quadratic assignment problem, Optimization On-line /2007/06/1684.
- [Drez:03]
-
Z. DREZNER.
A New Genetic Algorithm for the Quadratic Assignment Problem, INFORMS Journal of Computing, 15, 320-330, 2003.
- [Drez:02]
-
Z. DREZNER.
Robust heuristic algorithms for the quadratic assignment problem.
College of Business and Economics, California State University - Fullerton,
CA, USA, January 2002.
- [Drez:15]
-
Z. DREZNER.
The quadratic assignment problem.
In: F. S. da Gama, G. Laporte, and S. Nickel (eds.), Location Science, Springer, 345-363, 2015.
- [DrHaTa:03]
-
Z. DREZNER, P. HAHN and E. TAILLARD.
A study of quadratic Assignment Problem Instances that are Difficult for
Meta-heuristic Methods.
Accepted for publication to a special issue of Annals of Operations Research,
devoted to the State-of-the-Art in Integer Programming, Editors M. Guignard-
Spielberg and K. Spielberg, 2004.
- [Drez:06]
-
Z. DREZNER.
"Finding a Cluster of Points and the Grey Pattern Quadratic Assignment Problem," OR Spectrum, 28, 417-436, 2006.
- [DrHaTa:03]
-
Z. DREZNER, A. MISEVICIUS, and G. PALUBECKIS.
Exact Algorithms for the Solution of the Grey Pattern Quadratic Assignment Problem.
Mathematical Methods of Operations Research, 82, 85-105, 2015.
- [Elshafei:77]
-
A.N. ELSHAFEI.
Hospital layout as a quadratic assignment problem.
Operations Research Quarterly, 28:167-179, 1977.
- [EsWu:90]
-
B. ESCHERMANN and H.J. WUNDERLICH.
Optimized synthesis of self-testable finite state machines.
In 20th International Symposium on Fault-Tolerant Computing
(FFTCS 20), Newcastle upon Tyne, 26-28th June, 1990.
- [FlFe:94]
-
C. FLEURENT and J.A. FERLAND.
Genetic hybrids for the quadratic assignment problem.
In P. Pardalos and H. Wolkowicz, editors, Quadratic assignment
and related problems, volume 16, pages 173-187. DIMACS Series
in Discrete Mathematics and Theoretical Computer Science, 1994.
- [Gilmore:62]
-
P.C. GILMORE.
Optimal and suboptimal algorithms for the quadratic assignment
problem.
SIAM Journal on Applied Mathematics, 10:305-31, 1962.
- [Giovannetti:97]
-
M. GIOVANNETTI.
Methaheuristic and exact algorithms for the quadratic assignment
problem.
University of Bologna, Cesena Site, 1997.
- [HaReWo:92]
-
S.W. HADLEY, F. RENDL, and H. WOLKOWICZ.
A new lower bound via projection for the quadratic assignment
problem.
Mathematics of Operations Research, 17:727-739, 1992.
- [Hahn:68]
-
P.M. HAHN.
Minimization of Cost in Assignment of Codes to Data Transmission.
Ph.D. Dissertation, University of Pennsylvania, Philadelphia, UMI, Ann Arbor Michigan, Order No. 6905628, 1968.
- [HaGr:95]
-
P.M. HAHN and T. GRANT.
Lower bounds for the quadratic assignment problem based upon a dual
formulation. Operations Research, 46:912-942, 1998.
- [HaGrHa:96]
-
P. HAHN, T. GRANT, and N. HALL.
A branch-and-bound algorithm for the quadratic assignment problem based
on the Hungarian method. European Journal of Operational
Research, 108:629-640, 1998.
- [HHJGSR:99]
-
P.M. HAHN, W.L. HIGHTOWER, T.A. JOHNSON, M. GUIGNARD-SPIELBERG, and C. ROUCAIROL.
Tree elaboration strategies in branch and bound algorithms for solving the quadratic assignment problem.
Yugoslavian Journal of Operational Research, 11(1):41-60, 2001.
- [HHJGSR:01]
-
P.M. HAHN, W.L. HIGHTOWER, T.A. JOHNSON, M. GUIGNARD-SPIELBERG, and C. ROUCAIROL.
A level-2 reformulation-linearization techinque bound for the Quadratic Assignment Problem.
Working Paper 01-04, Systems Engineering Department, University of Pennsylvania, 2001.
- [HaKr:01]
-
P. HAHN and J. KRARUP.
A hospital facility problem finally solved. The Journal of Intelligent Manufacturing, 12(5/6):487-496, 2001.
- [Iriyama:97]
-
H. IRIYAMA.
Investigation of searching methods using meta-strategies
for quadratic assignment problem and its improvements.
Bachelor Thesis, University of Tokyo, Tokyo, Japan, 1997.
- [Johnson:92]
-
T.A. JOHNSON.
New linear programming-based solution procedures for the
quadratic assignment problem.
PhD thesis, Clemson University, Clemson, USA, 1992.
- [JueKA:01]
-
M. JÜNGER and V. KAIBEL.
The QAP-polytope and the star transformation,
Discrete Applied Mathematics 111(3):283-306, 2001.
- [Kaibel:97]
-
V. KAIBEL.
Polyhedral combinatorics of the quadratic assignment problem.
PhD thesis, University of Cologne, Cologne, Germany, 1997.
- [Kaibel:97a]
-
V. KAIBEL.
Polyhedral combinatorics of QAPs with less objects than locations.
Technical Report Nr. 97-297, Angewandte Mathematik und Informatik, Universitaet
zu Koeln, Cologne, Germany, 1997.
- [Karisch:95]
-
S.E. KARISCH.
Nonlinear approaches for the quadratic assignment and graph
partition problems.
PhD thesis, Graz University of Technology, Graz, Austria, 1995.
- [KaCeClEs:98]
-
S.E. KARISCH, E. CELA, J. CLAUSEN, and T. ESPERSEN.
A dual framework for lower
bounds of the quadratic assignment problem based on linearization.
Computing 63:351-403, 1999.
- [KaRe:95a]
-
S.E. KARISCH and F. RENDL.
Lower bounds for the quadratic assignment problem via triangle
decompositions.
Mathematical Programming, 71(2):137-152, 1995.
- [KrPr:78]
-
J. KRARUP and P.M. PRUZAN.
Computer-aided layout design.
Mathematical Programming Study, 9:75-94, 1978.
- [Lawler:63]
-
E. LAWLER.
The quadratic assignment problem.
Management Science, 9:586-599, 1963.
- [Li:92]
-
Y. LI.
Heuristic and exact algorithms for the quadratic assignment
problem.
PhD thesis, The Pennsylvania State University, USA, 1992.
- [LiPa:92]
-
Y. LI and P.M. PARDALOS.
Generating quadratic assignment test problems with known optimal
permutations.
Computational Optimization and Applications, 1:163-184, 1992.
- [LiPaRe:94]
-
Y. LI, P.M. PARDALOS, and M.G.C. RESENDE.
A greedy randomized adaptive search procedure for the quadratic
assignment problem.
In P. Pardalos and H. Wolkowicz, editors, Quadratic assignment
and related problems, volume 16, pages 237-261. DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, 1994.
- [LoAbBoHaQu:06]
-
E.M. LOIOLA, N.M.M. DE ABREU, P.O. BOAVENTURA-NETTO, P.M. HAHN, AND T. QUERIDO,
A survey for the quadratic assingment problem", Invited Review, European
Journal of Operational Research, vol. 176, pp 657-690, 2006.
- [Malucelli:93]
-
F. MALUCELLI.
Quadratic assignment problems: solution methods and
applications.
PhD thesis, University of Pisa, Pisa, Italy, 1993.
- [Maniezzo:97]
-
V. MANIEZZO.
Exact and approximate nondeterministic tree-search procedures
for the quadratic assignment problem.
Research Report CSR 97-1, Scienze dell'Informazione, Cesena site,
University of Bologna, 1997.
- [Mautor:92]
-
T. MAUTOR.
Contribution à la résolution des problèmes
d'implanation: algorithmes séquentiels et parallèles pour
l'affectation quadratique.
PhD thesis, Université Pierre et Marie Curie, Paris, France,
1992.
- [Mills:02]
-
P. MILLS.
Extensions to Guided Local
Search, PhD Thesis, Department of
Computer Science, University of Essex, 2002.
- [Mills:03]
-
P. MILLS, E.P.E. TSANG and J. FORD.
Applying an Extended Guided Local
Search on the Quadratic
Assignment Problem, Annals of Operations Research, Kluwer Academic
Publishers, Vol.118, 2003, 121-135.
- [Mise:08]
-
A. MISEVICIUS.
An implementation of the iterated tabu search algorithm for the quadratic assignment problem.
Working Paper, Kaunas University of Technology,
Kaunas, Lithuania, 2008.
- [Mise:05]
-
A. MISEVICIUS.
A tabu search algorithm for the quadratic assignment problem.
Computational Optimization and Applications,
30:95-111, 2005.
- [Mise:04]
-
A. MISEVICIUS.
An improved hybrid genetic algorithm: new results for the quadratic assignment problem,
Knowledge-Based Systems, 17:65-73, 2004
- [Mise:03]
-
A. MISEVICIUS.
A modified simulated annealing algorithm for the quadratic assignment problem.
Informatica, 14:497-514, 2003.
- [NuVoRu:68]
-
C.E. NUGENT, T.E. VOLLMAN, and J. RUML.
An experimental comparison of techniques for the assignment of
facilities to locations.
Operations Research, 16:150-173, 1968.
- [Ny:99]
-
M. NYSTRÖM.
Solving certain large instances of the quadratic assignment problem: Steinberg's examples.
Working paper, California Institute of Technology, 1999.
- [OsRu:96]
-
T. OSTROWSKI and V.T. RUOPPILA.
Genetic annealing search for index assignment in vector quantization.
Technical Report, Pattern Recognition Letters, 18(4):311-318, 1997.
- [PaReWo:94]
-
P.M. PARDALOS, F. RENDL, and H. WOLKOWICZ.
The quadratic assignment problem: a survey of recent developments.
In P. Pardalos and H. Wolkowicz, editors, Quadratic assignment
and related problems, volume 16, pages 1-42. DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, 1994.
- [PaWo:94]
-
P.M. PARDALOS and H. WOLKOWICZ, editors.
Quadratic assignment and related problems, volume 16 of
DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, 1994.
- [ReRaDr:94]
-
M.G.C. RESENDE, K.G. RAMAKRISHNAN, and Z. DREZNER.
Computing lower bounds for the quadratic assignment problem with an
interior point algorithm for linear programming.
Operations Research, 43: 781-791, 1995.
- [Rijal:95]
-
M. RIJAL.
Scheduling, design and assignment problems with quadratic
costs.
PhD thesis, New York University, New York, USA, 1995.
- [Rodriguez:04]
-
J.M. RODRIGUEZ.
An integrated system for the design of agile plant layouts, Unpublished Doctoral Dissertation, Department of Mechanical Engineering, University of New Brunswick, Fredericton, NB, Canada. (2004)
- [RoMcBoBh:04]
-
J.M. RODRIGUEZ, F.C. MacPHEE, D.J. BONHAM and V.C. BHAVSAR.
Solving the quadratic assignment and dynamic plant layout problems using a new hybrid meta-heuristic approach, Proceedings of the 18th Annual International Symposium on High Performance Computing Systems and Applications (HPCS), pp. 9-16, M.R. Eskicioglu (Ed.), Department of Computer Science, Winnipeg, Manitoba, Canada, May 16-19, 2004
- [Roucairol:87]
-
C. ROUCAIROL.
Du sequentiel au parallele: la recherche arborescente et son
application a la programmation quadratique en variables 0 et 1, 1987.
Thèse d'Etat, Université Pierre et Marie Curie, Paris,
France.
- [ScVe:75]
-
M. SCRIABIN and R.C. VERGIN.
Comparison of computer algorithms and visual based methods for plant
layout.
Management Science, 22:172-187, 1975.
- [Skorin:90]
-
J. SKORIN-KAPOV.
Tabu search applied to the quadratic assingnment problem.
ORSA Journal on Computing, 2(1):33-45, 1990.
- [Steinberg:61]
-
L. STEINBERG.
The backboard wiring problem: a placement algorithm.
SIAM Review, 3:37-50, 1961.
- [Stu:99]
-
Th. STÜTZLE.
Iterated local search for the quadratic assignment problem.
Research Report AIDA-99-3, Department of Computer Science,
Darmstadt University of Technology, Germany.
- [Taillard:91]
-
E.D. TAILLARD.
Robust tabu search for the quadratic assingnment problem.
Parallel Computing, 17:443-455, 1991.
- [Taillard:94]
-
E.D. TAILLARD.
Comparison of iterative searches for the quadratic assingnment
problem.
Location Science,3:87-105, 1995.
- [Taillard:98]
-
E.D. TAILLARD.
FANT: Fast ant system.
Technical Report IDSIA-46-98, Lugano, 1998.
- [TaGa:97]
-
E.D. TAILLARD and L.M. GAMBARDELLA.
Adaptive memories for the quadratic assingnment problem.
Research report, IDSIA Lugano, Switzerland, 1997.
- [TaHaGe:97]
-
E.G. TALBI, Z. HAFIDI, and J-M. GEIB.
Parallel adaptive tabu search for large optimization problems.
Research report, LIFL, University of Lille, March 1997.
- [ThBo:94]
-
U.W. THONEMANN and A. BÖLTE.
An improved simulated annealing algorithm for the quadratic
assignment problem.
Working paper, School of Business, Department of Production and
Operations Research, University of Paderborn, Germany, 1994.
- [Stuetzle:97]
-
T. STÜTZLE.
MAX-MIN ant system for quadratic assignment problems.
Research Report AIDA-97-04, Department of Computer Schience, Darmstadt
University of Technology, Germany, 1997.
- [WiWa:87]
-
M.R. WILHELM and T.L. WARD.
Solving quadratic assignment problems by simulated annealing.
IIE Transaction, 19/1:107-119, 1987.
- [Zhao:96]
-
Q. ZHAO.
Semidefinite programming for assignment and partitioning problems.
PhD thesis, University of Waterloo, Waterloo, Canada, 1996.
- [ZhKaReWo:96]
-
Q. ZHAO, S.E. KARISCH, F. RENDL, and H. WOLKOWICZ.
Semidefinite programming relaxations for the quadratic assignment
problem.
Technical Report DIKU-TR-96/32, Department of Computer Science, University of
Copenhagen, 1996.
GO BACK TO MAIN PAGE OF QAPLIB